You are visiting a website that is not intended for your region

The page or information you have requested is intended for an audience outside the United States. By continuing to browse you confirm that you are a non-US resident requesting access to this page or information.

Switch to the US site

This website uses cookies

By continuing to use this website you consent to using cookies. For more information about cookies and how we use them, please see our Privacy Policy.

Servo-n Neonatal Ventilator with HFO

Servo-n Screen neonatal ventilator

Servo-n Neonatal Ventilator with HFO

They deserve our best from the very beginning.

Helping premature babies breathe, sleep and grow.

Diagnostic tools

  • Electrical activity of the diaphragm (Edi)
  • Servo Compass
  • Trends, logs and media library


  • High Frequency Oscillatory Ventilation (HFOV)
  • Pressure Regulated Volume Control (PRVC)
  • Automode
  • Neurally Adjusted Ventilatory Assist (NAVA and NIV NAVA)
  • Non-invasive ventilation (NIV)
  • Nasal CPAP
  • High Flow therapy, and more


  • Proximal flow and pressure sensors
  • EtCO2
  • Integrated Aerogen nebuliser
  • On-screen contextual help
  • Workflow support


Protecting your neonate at every step of respiratory support

Finding the right level of ventilatory support without over- or under-assisting neonates is a delicate balance.[1][2] Servo-n makes it easier to assess that balance[3] and enables you to act on almost any situation, from delivery to discharge.

Download brochure

Servo-n neonatal ventilator helps you assess patient status

1. Assessing respiratory need

Diaphragmatic monitoring with the Edi aids you in determining and providing the appropriate support the babies want and need during any mode of ventilation.[3] It provides insight on the presence or absence of spontaneous breaths, patient effort, over- and under-assist,  patient-ventilator asynchrony, sedation, patient positioning and apnea of prematurity.[18]

Servo-n Neonatal Ventilator helps you prevent intubation

2. Preventing intubation

When CPAP is not enough, NIV NAVA offers a viable alternative that may increase NIV success.[4] NIV NAVA is leakage independent[5], it improves short-term physiological effects and comfort[6][7], and it lowers work of breathing.[8]

Servo-n Neonatal Ventilator helps you protect the intubated neonate

3. Protecting and stabilising

With NAVA, you have the opportunity to personalise the support. When babies are on this mode, they tend to choose lower pressure[9] and tidal volumes with improved compliance[10] and comfort[11], improving their blood gases and oxygenation.[12] And if the babies need controlled ventilation, PRVC is there for you.

Servo-n Neonatal Ventilator helps you rescue with HFOV

4. Rescuing with HFOV

Built-in HFOV allows you to quickly start the therapy without losing mean airway pressure or having to switch ventilators. It includes a volume target option and is purposely designed to reduce work of breathing. HFOV can also be delivered with a volume target option, which helps reduce high frequency tidal volume fluctuation and lowers the incidence of out-of-target PCO2. [17]


Servo-n Neonatal Ventilator supports you during weaning

5. Weaning from ventilation

Servo-n supports weaning from every step of ventilator treatment. PRVC automatically adjusts the peak pressure, achieving the set tidal volume based on compliance. Spontaneous breathing with NAVA and NIV NAVA allows the diaphragm to work in synchrony with appropriate unloading.[5] The maintenance of diaphragm activity, avoiding over- or under-assist ventilation, may limit atrophy.[2] [14],[15]

Servo-n Neonatal Ventilator comes with a pediatric option (PICU)

6. Extending treatment capabilities

With an available peadiatric option, the Servo-n is also able to extend its capabilities to the PICU. Or, if your primary ventilatory need is for ICU patients, the Servo-u ventilator can be extended with a neonatal option.

The Toledo Hospital journey towards better outcomes

Dr. Howard Stein says there are a number of alterations to thank for his patients’ improvements – PICC line reduction and non-invasive ventilation strategies, such as CPAP and NIV NAVA, to name a few.[16]

Graph of hospital statistics

Reduced death and morbidity in neonates by 40%

graph hospital statistics

Survival without morbidity increased by 40%

graph hospital statistics

Decrease in chronic lung disease by 70%

Graph statistics hospital

Median length of stay reduced by 9 days


All references

  1. 1. Emeriaud G, Larouche A, Ducharme-Crevier L, Massicotte E, Fléchelles O, Pellerin-Leblanc AA, Morneau S, Beck J, Jouvet P. Evolution of inspiratory diaphragm activity in children over the course of the PICU stay. Intensive Care Med. 2014 Nov;40(11):1718-26.

  2. 2. Ducharme-Crevier L, Du Pont-Thibodeau G, Emeriaud G. Interest of Monitoring Diaphragmatic Electrical Activity in the Pediatric Intensive Care Unit. Crit Care Res Pract. 2013; 2013: 384210.

  3. 3. Stein H, Firestone K. Application of neurally adjusted ventilatory assist in neonates. Semin Fetal Neonatal. Semin Fetal Neonatal Med. 2014 Feb;19(1):60-9.

  4. 4. Firestone KS, Beck J, Stein H. Neurally Adjusted Ventilatory Assist for Noninvasive Support in Neonates. Clin Perinatol. 2016 Dec;43(4):707-724

  5. 5. Beck J, Reilly M, Grasselli G, et al. Patient-ventilator interaction during neutrally adjusted ventilatory assist in low birth weight infants. Pediatr Res 2009;65(6):663–8.

  6. 6. Gibu CK, Cheng PY, Ward RJ, Castro B, Heldt GP. Feasibility and physiological effects of noninvasive neurally adjusted ventilatory assist in preterm infants. Pediatr Res. 2017 Oct;82(4):650-657.

  7. 7. Lee J, Kim HS, Jung YH, Shin SH, Choi CW, Kim EK, Kim BI, Choi JH. Non-invasive neurally adjusted ventilatory assist in preterm infants: a randomised phase II crossover trial. Arch Dis Child Fetal Neonatal Ed. 2015 Nov;100(6):F507-13.

  8. 8. Houtekie L, Moerman D, Bourleau A, Reychler G, Detaille T, Derycke E, Clément de Cléty S. Feasibility Study on Neurally Adjusted Ventilatory Assist in Noninvasive Ventilation After Cardiac Surgery in Infants. Respir Care. 2015 Jul;60(7):1007-14.

  9. 9. Piastra M, De Luca D, Costa R, Pizza A, De Sanctis R, Marzano L, Biasucci D, Visconti F, Conti G. Neurally adjusted ventilatory assist vs pressure support ventilation in infants recovering from severe acute respiratory distress syndrome: Nested study. J Crit Care. 2013 Oct 24.

  10. 10. Stein H, Howard D. Neurally Adjusted Ventilatory Assist (NAVA) in Neonates less than 1500 grams: a retrospective analysis. J Pediatr 2012;160:786e9.

  11. 11. de la Oliva P, Schuffelmann C, Gomez-Zamora A, Vilar J, Kacmarek RM. Asynchrony, neural drive, ventilatory variability and COMFORT: NAVA vs pressure support in pediatric patients. A randomized cross-over trial. Int Care med. Epub ahead of print April 6 2012.

  12. 12. Kallio M, Peltoniemi O, Anttila E, Pokka T, Kontiokari T. Neurally Adjusted Ventilatory Assist (NAVA) in Pediatric Intensive Care – A Randomized Controlled Trial. Pediatr Pulmonol. 2015 Jan;50(1):55-62.

  13. 13. Firestone KS, Beck J, Stein H. Neurally Adjusted Ventilatory Assist for Noninvasive Support in Neonates. Clin Perinatol. 2016 Dec;43(4):707-724.

  14. 14. L. Brochard, A. Harf, H. Lorino, and F. Lemaire. Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. American Review of Respiratory Disease, vol. 139, no. 2, pp. 513–521, 1989.

  15. 15. E. Futier, J.M. Constantin, L. Combaret et al., “Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm,” Critical Care, vol. 12,no. 5, articleR116, 2008.

  16. 16. Stein H. (APA, 2014). Neonatal outcomes. Retrieved from