Hypoxic guard systems - how safe are they?

A brief interview with Dr. Jan Hendrickx, expert in kinetics of inhaled agents and carrier gases, on today’s deficient safety standards and possible solutions.
Hypoxic guard systems

Safety standards and solutions

What is the typical problem with hypoxic guard systems of anesthesia machines?

Hypoxic guard systems are one of the safety systems in anesthesia machines that are designed to avoid the risk of delivering a hypoxic gas mixture to the patient during general anesthesia. Unfortunately, the standards for anesthesia machines are not very clear regarding hypoxic guard systems, which allow the manufacturers to design a system that only prevents the formation of a hypoxic mixture (N₂O with an O₂ concentration less than 21%) in the fresh gas, but not in the inspired gas.

In our studies we have seen that these systems may fail to maintain the inspired O₂ concentration (F₈O₂) ≥ 21% when a second carrier gas is used, especially during low flow anesthesia. Failure can happen, despite a properly functioning hypoxic guard, because re-breathing can lower the F₈O₂ more than the machine standards anticipated. This means that it is easy for inspired hypoxic mixtures to be formed even when the set O₂ concentration is 21% or even 25% or higher!

Further reading

Clinical study *Hypoxic guard systems do not prevent rapid hypoxic inspired mixture formation* shows the failure of a hypoxic guard system that is even more stringent than required by anesthesia machine standards. Access the article, including supplementary video, here: https://doi.org/10.1007/s10877-014-9626-y

What are the consequences for O₂ concentrations during low flow anesthesia?

Lowering fresh gas flows in a circle system results in a difference between the delivered O₂ concentration (at the common gas outlet; F₈) and F₈O₂, if a second carrier gas is being used – the result of rebreathing. Consequently, F₈O₂ becomes lower than F₈O₂. Unfortunately, this may not always be sufficiently recognized, and if settings are not adjusted, then hypoxic mixtures can develop.

Do you think a F₈O₂ alarm would be enough for the anesthesiologists?

We think that the anesthesia provider may be confused about what causes an alarm, also because existing hypoxic guard systems give a false sense of security. That is why, when F₈O₂ < 21%, it is very important that the machine overrides the anesthesiologist’s settings if no action is being taken by the provider.

The unsafe zone

Hypoxic guard limits (gray line) did ensure F₈O₂ (blue lines) remained ≥ 21% with FGF outside the white FGF area, but not when the FGF was in the “unsafe zone” between 0.7–3 L min. The white line represents the zone where F₈O₂ might be lower than 21%.

CASE STUDY: ANESTHESIA FLOW-I O₂ GUARD
What is the difference between the Flow-i’s O₂ Guard and the hypoxic guards of conventional anesthesia machines?

The O₂ Guard® is a smart hypoxic guard system that actively intervenes when F\(_{I \ O_2}\) < 21%. With the Maquet Flow-i®, if F\(_{I \ O_2}\) decreases below 21% for 18 s, the system will automatically increase the O\(_2\) fresh gas flow and the F\(_{D \ O_2}\) restoring F\(_{I \ O_2}\) to at least 25% within 55 s after its activation.³,⁴

All in all, what is your impression of O₂ Guard?

The Flow-i O₂ Guard is the only commercially available active inspired hypoxic guard that limits the duration of inspired hypoxic episodes during anesthesia caused by shortcomings of existing delivered hypoxic guard systems.⁴

O₂ Guard’s unique three step approach

1. Low F\(_{O_2}\) alarm
2. O\(_2\) & FGF ↑
3. O\(_2\) safety flush FGF 3 L/min

Further reading

Clinical study *Performance of an active inspired hypoxic guard*,⁴ with supplementary video, can be accessed here: https://doi.org/10.1007/s10877-015-9684-9.

Time from O₂ Guard activation to F\(_{O_2}\) restoration to 25 %

Time (s) from O₂ Guard (Maquet Flow-i) activation until F\(_{I \ O_2}\) = 25 % for each F\(_{D \ O_2}\) / FGF combination. Each symbol represents the values of one patient; the blue line connects the median values.⁵
References

