Module 1: The Critical Science: Understanding the ABCs of Mechanical Circulatory Support

Divaka Perera MA, MD, FRCP
St. Thomas’ Hospital
King’s College
London, UK
Disclosure

All presenters have a speaker agreement with Maquet

Disclaimer – Indications

The content of this presentation represents a medical practioner’s authorized practice of medicine in the exercise of appropriate medical judgment for the best interest of the patient. Refer to Maquet’s Instructions for Use for current indications, warnings, contraindications, and precautions.
Goals of Mechanical Circulatory Support
A: Myocardial Protection

DEMAND
- Heart Rate
- Contractility
- Afterload

SUPPLY
- Diastolic Pressure (DPTI)
- Microvascular resistance
- Coronary Patency
B: Organ Perfusion

- **Tissue blood flow**
 - \(F = \frac{MAP}{VR} \)
 - **Local vascular resistance**
 - **Mean aortic pressure**
 - \(MAP = CO \times TPR \)

- **Cardiac output**
 - \(CO = HR \times SV \)

- **Stroke volume**
 - \(SV = EDV - ESV \)
 - **Heart rate**
 - **Total peripheral resistance**

- **End-diastolic volume**
 - **End-systolic volume**

- **Afterload**
 - **Contractility**

Filling pressure

Cardiac compliance
C: Safety and Ease of Use

Bleeding
Vascular Complications
Cerebrovascular Complications

Availability
Rapid Initiation
Familiarity/Specialist Expertise
Circulatory Support Strategies
1. Inotropic Drugs
1. Inotropic Drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Effect</th>
<th>CO</th>
<th>SVR</th>
<th>MAP</th>
<th>Tissue VR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dobutamine</td>
<td>DA β1 β2 agonism</td>
<td>↑↑</td>
<td>↓</td>
<td>↑↓</td>
<td>↓↑</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>A1 β 1/2 agonism</td>
<td>↑↑</td>
<td>↑↑</td>
<td>↑↑</td>
<td>↑</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>α1 β1 / 2 agonism</td>
<td>↑↓</td>
<td>↑↑</td>
<td>↑↑</td>
<td>↑↑</td>
</tr>
<tr>
<td>Levosimendan</td>
<td>Ca++ sensitiser</td>
<td>↑↑</td>
<td>↓↓</td>
<td>↑↓</td>
<td>↓</td>
</tr>
<tr>
<td>Milrinone</td>
<td>PDE inhibitor</td>
<td>↑↑</td>
<td>↓↓</td>
<td>↑↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

Increased MVO$_2$
Increased tissue vascular resistance
2. Intra Aortic Balloon Pump
2. Intra Aortic Balloon Pump

![Graph showing pressure dynamics with arrows indicating unassisted systolic pressure, diastolic augmentation, assisted systolic pressure, and unassisted end diastolic pressure.]
2. Intra Aortic Balloon Pump

Coronary and Microvascular Physiology During Intra-Aortic Balloon Counterpulsation

JACC CV Interv, April 2014

Kalpa De Silva, MBBS, PhD,* Matthew Lumley, MBBS, BSc,* Balrik Kailey, BSc,* Jordi Alastraey, PhD,† Antoine Guilcher, PhD,‡ Kaleab N. Aseress, MA, BM, BCH,* Sven Plein, MD, PhD,*§ Michael Marber, PhD,* Simon Redwood, MBBS, MD,* Divaka Perera, MA, MD*
Coronary and Microvascular Physiology During Intra-Aortic Balloon Counterpulsation

JACC CV Interv, April 2014

Kalpa De Silva, MBBS, PhD,* Matthew Lumley, MBBS, BSc,* Balbir Kailey, BSc,* Jordi Alastruey, PhD,† Antoine Guilcher, PhD,‡ Kaleab N. Asress, MA, BM, BChE,* Sven Plein, MD, PhD,‖ Michael Marber, PhD,* Simon Redwood, MBBS, MD,* Divaka Perera, MA, MD*
A Myocardial protection by improving myocardial perfusion and reducing oxygen demand, especially when Autoregulation is dysfunctional or exhausted

- Persistent ischemia (no reflow)
- Sustained hypotension
- Critical coronary disease (local maximal microvascular dilation)

B No direct effect on tissue perfusion (indirect effect via myocardial protection)

C Safe and Easy to use
Intra-aortic Balloon Pump Trials: Questions, Answers and Unresolved Issues

Table: Randomized Control Trials of Intra-aortic Balloon Counterpulsation

<table>
<thead>
<tr>
<th>Patient Group</th>
<th>Trial</th>
<th>n</th>
<th>Inclusion</th>
<th>Principal End Point</th>
<th>Results (IABP vs Control Group)</th>
<th>Timing of IABP Insertion</th>
<th>Crossover From Control to IABP Group, %</th>
<th>Bleeding Rates</th>
<th>Vascular Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-risk PCI (excluding shock/AMI)</td>
<td>Perera et al⁹</td>
<td>301</td>
<td>LVEF<30% BCIS Jeopardy score<8</td>
<td>Composite of death, AMI, CVA or further revascularization at hospital discharge (capped at 28 days)</td>
<td>15.2% vs 16%; OR, 0.94; 95% CI, 0.51-1.76; P=0.85</td>
<td>Pre-PCI 12.0</td>
<td>19.2% vs 11.3%; OR, 1.88; 95% CI, 0.93-3.79; P=0.06</td>
<td>3.3% vs 0%; P=0.06 (at hospital discharge, capped at 28 days)</td>
<td></td>
</tr>
<tr>
<td>AMI-without shock</td>
<td>Perera et al¹⁰</td>
<td>182</td>
<td>All-cause mortality at follow-up (median 51 mo)</td>
<td></td>
<td>27.8% vs. 38.7%, HR 0.66; 95% CI, 0.44-0.98; P=0.039</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMI complicated by cardiogenic shock</td>
<td>Ohman et al¹¹</td>
<td>437</td>
<td>STE-ACS or NSTEMI or urgent catheterization revealing an occluded vessel with regional LV dysfunction</td>
<td>Recurrence of infarct-related artery & reocclusion, stroke, new-onset heart failure, or sustained hypotension</td>
<td>28.9% vs 29.2%; P=0.95</td>
<td>Post-PCI 11.5</td>
<td>36% vs 27%; P=0.05</td>
<td>0.5% vs 0.4%; P=1.0 (in-hospital; requiring surgical intervention)</td>
<td></td>
</tr>
<tr>
<td>AMI complicated by cardiogenic shock</td>
<td>van’t Hof et al¹²</td>
<td>238</td>
<td>STE-ACS Primary PCI</td>
<td>Composite of death, nonfatal reinfarction, stroke or EF<30% at 6 mo</td>
<td>26% vs. 26%; P=0.94</td>
<td>Post-PCI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMI complicated by cardiogenic shock</td>
<td>Patel et al¹³</td>
<td>337</td>
<td>STE-ACS or NSTEMI Early PCI</td>
<td>Infarct size as a percentage of LV mass</td>
<td>42.1% vs 37.5%; P=0.07</td>
<td>Pre-PCI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMI complicated by cardiogenic shock</td>
<td>Thiele et al¹⁰</td>
<td>600</td>
<td></td>
<td>30-d mortality</td>
<td>39.7% vs 41.3%; P=0.69</td>
<td>Operator discretion (86.6% after PCI)</td>
<td>3.3% vs 4.4%; P=0.51 (severe life-threatening)</td>
<td>4.3% vs 3.4%; P=0.53 (surgical vascular repair)</td>
<td></td>
</tr>
</tbody>
</table>

3.1% vs 1.7%; P=0.49 (at 30 days)
4.3% vs 1.1%; P=0.09 (at 30 days)
3.3% vs 4.4%; P=0.51 (severe life-threatening)
4.3% vs 3.4%; P=0.53 (surgical vascular repair)
3. Impella Recover

Direct LV Unloading by providing continuous (non-pulsatile)

LV -> aortic flow

2.5 L/min: 13F
3.5 L/min: 14F
5.0 L/min: 22F
3. Impella Recover

3. Impella Recover

A: Myocardial protection by decreasing afterload -> reducing oxygen demand (effects on myocardial perfusion??)

B: Improves cardiac output without increasing local vascular resistance -> improves tissue perfusion

C: (Relatively) Safe and Easy to use but increasing risk of vascular complications, especially with larger bore access

2.5 L/min: 13F
3.5 L/min: 14F
5.0 L/min: 22F
4. Extra-Corporeal Pumps

Tandem Heart
- LA -> Ao continuous flow
- Large bore arterial and venous access
- Trans-septal puncture

VA-ECMO/ECLS
- RA -> Ao continuous flow
- Large bore arterial and venous access
4. Extra-corporeal Pumps

- Improve cardiac output and tissue perfusion
 BUT at the cost of increased afterload -> increased MVO$_2$
 - (? Effect on coronary flow)
 - Vascular risk ++, Complexity ++
Circulatory Support Strategies: Summary

<table>
<thead>
<tr>
<th></th>
<th>Myocardial Protection</th>
<th>Tissue Perfusion</th>
<th>Ease of Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Supply</td>
<td>Demand</td>
<td></td>
</tr>
<tr>
<td>Inotropic drugs</td>
<td>+/-</td>
<td>-</td>
<td>+/-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+ + + +</td>
</tr>
<tr>
<td>IABP</td>
<td>+ +</td>
<td>+</td>
<td>+ + +</td>
</tr>
<tr>
<td>Impella</td>
<td>?</td>
<td>+</td>
<td>+ +</td>
</tr>
<tr>
<td>VA-ECMO/ECLS</td>
<td>?</td>
<td>-</td>
<td>+ + + +</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Desired effect</td>
</tr>
<tr>
<td>-</td>
<td>Undesirable effect</td>
</tr>
<tr>
<td>?</td>
<td>Missing/equivocal data</td>
</tr>
</tbody>
</table>
Selecting the right support strategy

Which device for which patient?

Characterise by Broad Diagnostic Category

OR

Individual Physiology?
BCIS-1: Major Outcomes

![Graph showing adverse events (%)](image)

Perera et al. JAMA 2010; 364(8):867-874

Primary outcome

<table>
<thead>
<tr>
<th></th>
<th>All (N=337)</th>
<th>IABC (N=161)</th>
<th>SOC (N=176)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infarct size (% LV), modified ITT all patients with CMR data</td>
<td></td>
<td></td>
<td></td>
<td>0.060</td>
</tr>
<tr>
<td>N</td>
<td>275</td>
<td>133</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>39.8</td>
<td>42.1</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>38.8</td>
<td>42.8</td>
<td>36.2</td>
<td></td>
</tr>
<tr>
<td>Infarct size (% LV), modified ITT patients prox. LAD and TIMI flow 0/1</td>
<td></td>
<td></td>
<td></td>
<td>0.110</td>
</tr>
<tr>
<td>N</td>
<td>192</td>
<td>93</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>44.4</td>
<td>46.7</td>
<td>42.3</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>42.1</td>
<td>45.1</td>
<td>38.6</td>
<td></td>
</tr>
<tr>
<td>Co-primary endpoint: 2-sided p=0.025</td>
<td>Patel et al. JAMA 2011;305(12):1329-37</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary Study Endpoint (30-Day Mortality)

![Graph showing mortality (%) over time after randomization (Days)](image)

Thiele et al. NEJM 2012;367:1287-96

PROTECT II Interim Results

![Table showing relative risk and group p-value](image)

<table>
<thead>
<tr>
<th></th>
<th>Patients</th>
<th>Impella</th>
<th>IABP</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (N=100%)</td>
<td>38%</td>
<td>43%</td>
<td>0.40</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing outcomes](image)
In Summary

• Principles and goals behind mechanical circulatory support
• Different support strategies and how they fit in with the principles
• Tailoring the support strategies for the individual patient