You are visiting a website that is not intended for your region

The page or information you have requested is intended for an audience outside the United States. By continuing to browse you confirm that you are a non-US resident requesting access to this page or information.

Switch to the US site

Select Your Country or Region
提交
Covid 19 - Resource center

神经调节通气辅助

NAVA, Neurally adjusted ventilator assist. Achieve faster personalized weaning with lung and diaphragm protective ventilation

神经调节通气辅助

这并不是读心术,但它与读心术相差无几。[1],[2]

想象一下,它能够知道患者想要什么,并给与患者所想要的东西,用患者自身的呼吸驱动来控制呼吸机。我们称其为“神经调节通气辅助(NAVA)”。它使用专用的胃饲管(Edi导管),通过捕捉激活膈肌(Edi)的电信号,来密切监视患者呼吸中枢的反应。通过提供对肺和膈肌有保护作用的个性化通气,NAVA缩短了机械通气时间[3] 并增加了无呼吸机天数。[3] [4] [5] 

概况

通过肺和隔肌保护通气实现更快的个性化撤机

Monitor Edi – the vital sign of respiration, from day zero

1. 从一开始就监测Edi — 呼吸的重要信号

Protect and activate the diaphragm to wean earlier

2. 保护和激活膈肌的正常功能以便更早撤机

Protect the lungs in synchrony with the patient

3. 与患者同步,保护肺部

Improve the patient’s overall ICU experience

4. 改善患者整体的 ICU 体验

监测 Edi — 呼吸的重要信号

除了监测机械通气对肺功能的影响外,还必须从一开始就监测患者的呼吸驱动力和为之付出的努力。 有了Edi监控的帮助,可以更早做出更加明智的决策。在下部屏幕上显示生命体征时,您可以检测到隔肌的暂停活动、过度镇静,患者与呼吸机的不同步以及辅助过度和不足。您还可以在撤机试验和拔管后监测呼吸工作量的增加[5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

进一步了解 Edi 监测

保护膈肌的通气技术

机械通气不足会迅速导致急性膈肌萎缩或因高负荷诱发的损伤,并伴有不良术后反应 [16] [17]。 NAVA的主要生理优势是,压力始终与患者自身的呼吸驱动力成比例,并且与之同步,并且Edi可以很容易地用作床旁诊断工具 [1] [2]。NAVA 缩短了撤机时间,增加了成功撤机的患者比例[3][4]

进一步了解

保护肺部的通气技术

NAVA与传统支持模式的主要区别在于,潮气量(VT)是通过患者呼吸中枢的神经电信号输出控制的。因此,得益于 Hering-Breuer 反射,可防止肺过度膨胀,该反射可在较高的潮气量下调呼吸驱动力,从而避免过度通气。所以,可以在 6-8 ml/kg [1] [2] [18] PBW 的保护范围内实现保护肺部的自发呼吸。

Learn more about lung-protective ventilation with NAVA

优化患者体验

事实证明,NAVA 可以整体改善患者的 ICU 体验,通过改善舒适度和睡眠质量,帮助医生减少镇静剂的使用[19] [20] [21] [22] [23]。Edi 和 NAVA 的联合使用,可以确保各个类型的患者的呼吸行为得到了有效的评估和响应。对于急性加重的 COPD 患者,我们的无创,无漏气影响风险的NIV NAVA 模式可以有效地管理其状况并避免插管[14] [24] [25] [26] [27] [28]

进一步了解

主要功能

拥有 Edi 监控的 NAVA 能够帮助医院做些什么?

功能简述:

个性化的通气

个性化的通气

illustration nava

有创NAVA

同步辅助、尽早脱机和药物镇静管理,支持早期膈肌活化监测。

Illustation non-invasive nava

无创NAVA

同步辅助,不受泄漏的影响,更广泛的面罩使用。

illustration monitoring

Edi监测

拔管后仍可监测膈肌活动和呼吸动力。如有需要,可以与高流量疗法一起使用。

 

个性化的通气

发现并满足患者的需求

在大多数重症监护病房中,20%的患者消耗80%的通气资源,这可能导致并发症增加和不良后果。 [31] 对于这些患者,仅仅进行常规通气是不够的。通过在Servo 呼吸机上使用 NAVA 模式,无论患者的类别或大小如何,NAVA模式均可工作,呼吸机可向您显示患者的需求。与其他个性化通气工具一起使用,可以帮助患者减少并发症[9] [10] [29] [30],监测并减少镇静剂的使用 [5] [19] [20] [21], 实现更早、更成功的撤机 [3] [4] [8] [13] [14],并缩短机械通气时间 [3] [20] [21]

从 Servo-u 呼吸机开始尝试 NAVA 功能

培训视频将为您演示如何从 Servo-u 呼吸机开始尝试 NAVA 功能

培训

通过我们的网上学习课程拓展您的知识面

NAVA 和 Edi 的基本概念
NAVA 单元 1(10分钟)

  • 呼吸调节
  • 常规通气治疗
  • Edi和NAVA治疗
  •  

English (voice over)

NAEdi 的基本概念NAVA 单元 2(10分钟)

  • 呼吸调节
  • 常规通气治疗
  • Edi和NAVA治疗

English (voice over) 

Servo-u NAVA (10 分钟)

  • Servo-u NAVA 屏幕布局
  • NAVA 工作流程

English (voice over) | French | German | Italian | Spanish | Swedish | Dutch

下载

相关产品

Servo-n 呼吸机

适用于婴幼儿患者的整合呼吸治疗 - 呼吸、睡眠和成长。

了解更多

Servo-u 呼吸机

Servo-u 为您提供许多定制化的肺保护和撤机策略。这些都是易于理解、实施和使用,使先进的定制化通气策略融入到日常病人护理中变得简单。 *本页所示的Servo呼吸机和/或呼吸机选项可能未在您的国家上市,或正在等待监管部门的批准,以待上市。联系您的Getinge代表获得更多信息。

了解更多

Servo-i呼吸机

广泛的功能可治疗成人、儿童和新生儿患者。

了解更多

PiCCO技术

通过PiCCO简化血流动力学并学习如何理解复杂的病症

了解更多

PulsioFlex 心输出量测量仪

具有智能可视化模块化平台,可用于高级患者监测

了解更多

ProAQT技术

围手术期血流动力学管理中的导航仪

了解更多

LiMON 技术

无创监测肝功能或内脏灌注

了解更多

CeVOX 技术

CeVOX技术采用分光光度法

了解更多

所有参考

  1. Sinderby C, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999 Dec;5(12):1433-6.

  2. Jonkmann A, et al. Proportional modes of ventilation: technology to assist physiology Intensive Care Med. 2020 Aug 11;1-13.

  3. Kacmarek R, et al. Neurally adjusted ventilatory assist in acute respiratory failure: a randomized controlled trial. Intensive Care Med 2020. Sep 6 : 1–11.

  4. Liu L, et al. Neurally Adjusted Ventilatory Assist versus Pressure Support Ventilation in Difficult Weaning. A Randomized Trial. Anesthesiology. 2020 Jun;132(6):1482-1493.

  5. Hadfield D, et al Neurally adjusted ventilatory assist versus pressure support ventilation: a randomized controlled feasibility trial performed in patients at risk of prolonged mechanical ventilation Critical Care 2020 May 14;24(1):220.

  6. ATS/ERS Statement on Respiratory Muscle Testing. American Journal of Respiratory and Critical Care Medicine, 2002166(4), pp. 518-624.

  7. Ducharme-Crevier L, et al. Interest of Monitoring Diaphragmatic Electrical Activity in the Pediatric Intensive Care Unit. Crit Care Res Pract. 2013;2013:384210.

  8. Emeriaud G, et al. Evolution of inspiratory diaphragm activity in children over the course of the PICU stay. Intensive Care Med. 2014 Nov;40(11):1718-26.

  9. Piquilloud L, et al. Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med. 2011 Feb;37(2):263-71.

  10. Yonis H, et al. Patient-ventilator synchrony in Neurally Adjusted Ventilatory Assist (NAVA) and Pressure Support Ventilation (PSV). BMC Anesthesiol. 2015 Aug 8;15:117.

  11. Cecchini J, et al. Increased diaphragmatic contribution to inspiratory effort during neurally adjusted ventilatory assistance versus pressure support: an electromyographic study. Anesthesiology. 2014 Nov;121(5):1028-36.

  12. Di Mussi R, et al. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care. 2016 Jan 5;20(1):1.

  13. Barwing J, et al. Electrical activity of the diaphragm (EAdi) as a monitoring parameter in difficult weaning from respirator: a pilot study. Crit Care. 2013 Aug 28;17(4):R182.

  14. Bellani G, Pesenti A. Assessing effort and work of breathing. Curr Opin Crit Care. 2014 Jun;20(3):352-8.

  15. Bellani G, et al. Clinical assessment of autopositive end-expiratory pressure by diaphragmatic electrical activity during pressure support and neurally adjusted ventilatory assist. Anesthesiology. 2014 Sep;121(3):563-71.

  16. Dres M, Goligher EC, Heunks LMA, Brochard LJ. Critical illness-associated diaphragm weakness. Intensive Care Med. 2017 Oct;43(10):1441-1452.

  17. Goligher EC, Hodgson CL, Adhikari NKJ, et al. Lung recruitment maneuvers for adult patients with acute respiratory distress syndrome. Ann Am Thorac Soc 2017;14:S304-11.

  18. Patroniti N, et al. Respiratory pattern during neurally adjusted ventilatory assist in acute respiratory failure patients. Intensive Care Med. 2012 Feb;38(2):230-9.

  19. De la Oliva P, et al. Asynchrony, neural drive, ventilatory variability and COMFORT: NAVA versus pressure support in pediatric patients. Intensive Care Med. 2012 May;38(5):838-46.

  20. Piastra M, et al. Neurally adjusted ventilatory assist vs pressure support ventilation in infants recovering from severe acute respiratory distress syndrome: nested study. J Crit Care. 2014 Apr;29(2):312.e1-5.

  21. Kallio M, et al. Neurally adjusted ventilatory assist (NAVA) in pediatric intensive care – a randomized controlled trial. Pediatr Pulmonol. 2015 Jan;50(1):55-62.

  22. Delisle S, et al. Sleep quality in mechanically ventilated patients: comparison between NAVA and PSV modes. Ann Intensive Care. 2011 Sep 28;1(1):42.

  23. Delisle S, et al. Effect of ventilatory variability on occurrence of central apneas. Respir Care. 2013 May;58(5):745-53.

  24. Doorduin J, et al. Automated patient-ventilator interaction analysis during neurally adjusted noninvasive ventilation and pressure support ventilation in chronic obstructive pulmonary disease. Crit Care. 2014 Oct 13;18(5):550.

  25. Kuo NY, et al. A randomized clinical trial of neurally adjusted ventilatory assist versus conventional weaning mode in patients with COPD and prolonged mechanical ventilation. International Journal of COPD. 2016 11;11:945-51.

  26. Sun Q, et al. Effects of neurally adjusted ventilatory assist on air distribution and dead space in patients with acute exacerbation of chronic obstructive pulmonary disease. Crit Care 2017 2;21(1):126.

  27. Karagiannidis C, et al. Control of respiratory drive by extracorporeal CO 2 removal in acute exacerbation of COPD breathing on non-invasive NAVA. Crit Care 2019 Apr 23;23(1):135.

  28. Prasad KT, et al. Comparing Noninvasive Ventilation Delivered Using Neurally-Adjusted Ventilatory Assist or Pressure Support in Acute Respiratory Failure. Resp Care 2020 Sep 1;respcare.07952.

  29. Blankman P, et al. Ventilation distribution measured with EIT at varying levels of PS and NAVA in Patient with ALI. Intensive Care Med. 2013 Jun;39(6):1057-62.

  30. Patroniti N, et al. Respiratory pattern during neurally adjusted ventilatory assist in acute respiratory failure patients. Intensive Care Med. 2012 Feb;38(2):230-9.

  31. Icuregswe.org. (2016). Start - SIR-Svenska Intensivvardsregistret. [online] Available at: http://www.icuregswe.org/en/ [Accessed Dec 2. 2015].