You are visiting a website that is not intended for your region

The page or information you have requested is intended for an audience outside the United States. By continuing to browse you confirm that you are a non-US resident requesting access to this page or information.

Switch to the US site

Select Your Country or Region
提交
Covid 19 - Resource center

度身定做的机械通气

我们的目标是呼吸机可帮助成人、儿童和新生儿患者尽可能安全舒适的通气并易于使用。

为什么忠爱SERVO呼吸机?

提高了患者安全性

SERVO呼吸机可以帮助临床减少工作量,降低使用错误,减少报警

提供需要的支持

使患者降低镇静的使用,减少并发症,尽早脱离机械通气。[2] [3] [4]

适应需求

为新生儿至成人不同类别和病情的患者提供高质量的通气。

确保投资收益

性能可靠,维护成本低,易于连接到医院系统。

提高了患者安全性

使患者更安全,减少医护人员的工作量

最近一项关于危重症的研究表明,通过选择易于使用的呼吸机,可以保证患者安全,并对医护产生积极的影响。[1]

了解更多详情

“就像机器里有说明书一样。”

SERVO - U/n/air呼吸机都具有人性化的说明书,以屏幕上信息丰富的文本和图像指南为特色,包括通气模式的定义及设置指导;报警设置的建议;安全范围的设置参考等等,并可从视频中了解更多信息。

提供适宜的通气,尽早脱机

研究表明,许多ICU患者会产生呼吸困难。这些患者可能面临着多次通气挑战,消耗了大量呼吸功。向下滚动,了解如何帮助应对这些挑战。

挑战 : 避免呼吸衰竭患者插管

患者有创通气插管可能会导致多种并发症,如呼吸机相关肺炎(VAP),过度镇静,精神错乱以及ICU获得性神经肌肉障碍等。

无创呼吸支持大大的降低了这些情况的发生,并能使患者保持体力,优选考虑无创通气这是目前许多ICU采用的策略。SERVO-U能为患者提供多种无创通气性治疗方案。

了解更多 SERVO-U 信息

挑战 : 在控制通气期间防止呼吸机引起的肺损伤

部分患者需要完全的控制通气,气压伤、肺损伤和耳外伤都是潜在的危险, SERVO COMPASS这项功能可以更方便地看到每公斤预计体重的驱动压力和潮气量的变化,有效降低并发症发。[12] [13] 与生存密切相关的参数请观看视频了解更多的SERVO COMPASS。

挑战 : 急性呼吸窘迫综合征(ARDS)的优化治疗

ARDS的患者肺通透性增加,更需要从机械通气的角度考虑血流动力学。先进的血流动力学监测可以优化血流和流体管理,识别肺水肿,改善气体交换,减少呼吸机的使用时间。.[14] [15] [16] [17] [18]

了解更多 ARDS 信息

挑战 : 预防辅助通气时呼吸机引起的肺损伤

研究表明,神经调节呼吸辅助(NAVA®)可大大的改善人机同步性,促进气体交换,进行肺保护性通气。[19] [20] 使用NAVA时,当肺部过度膨胀,呼吸中枢反射会立即限制潮气量改善。这种呼吸模式可使患者选择自己所需要的潮气量,降低VILI的发生。[21] [22]

挑战 : 避免呼吸机引起的隔膜功能障碍(VIDD)

横膈膜厚度在机械通气48小时后可降低21%[23] 别膈肌可能很复杂,但不可或缺。[24]  监测Edi信号可以反应患者的膈肌活动,而NAVA个性化的通气可以提高膈肌效率,减少过度辅助。[25] [26] 请观看视频了解更多关于Edi信息。

挑战 : 避免通气过程中患者与呼吸机的不同步

人机不同步患者占ICU所有镇静使用的42%[27] [28] [29] [30] 人机不同步患者治疗效果较差,通气时间较长;[31] 监测膈肌活动(Edi)使检测不同步更方便,可以根据患者需要调整呼吸机的设置。[32] 观看视频Edi是如何工作的。

挑战 : 防止延迟脱机

最近的一项研究显示,29%的患者由于膈肌功能障碍而出现脱机失败致使机械通气时间延长至16天。[23] 但是拥有NAVA呼吸机,减少镇静剂的使用,运动膈肌使患者更舒适,这可能有助于促进更早脱机。[2] [3] [4] 此外,监测膈肌活动(Edi)可以帮助评估脱机准备情况,并可在脱机后监测恢复过程中呼吸中枢做功情况。[32]

呼吸机适应的各种条件

医院的自主基础设施

医院从ICU到中级护理,涡轮式呼吸机更易获取高质量的通气。SERVO-air兼容有创和无创通气。

MR环境

SERVO-i® MR 在整个核磁检查过程中为危重患者提供持续的通气。全面的触发灵敏度和所有的通气选项可用于全类型患者。

高压氧舱

SERVO-i HBO在压力高达30米的情况下扔提供高质量的通气,其适用于所有患者。

新生儿重症监护治疗病房

帮助新生儿呼吸,睡眠和成长。新生儿通气尽可能地减少对幼小肺部的损伤,降低超限的呼吸频率,进行漏气补偿。

[33] [34]

保证投资收益,令收益稳定无压力

成本效益

SERVO呼吸机易于学习和使用,需要清洗的部件少,维护方便,缩短培训时间增加培训质量和工作人员的效率。

连接环境

SERVO呼吸机可连接到多个PDMS系统和患者监视器。[1] HL7变换器使系统符合IHE技术指标。

智能机器管理

SERVO呼吸机相似的外观,可互换的插件模块,超高灵敏度,更多的移动解决方案,使其更加便于管理易于使用使用。

可扩展的服务程序

远程服务可以连接任何医院的计算机查看和访问设备的信息。一系列高品质的耗材和部件将确保SERVO呼吸机的先进性。

所有参考

  1. Plinio P. Morita, Peter B. Weinstein, Christopher J. Flewwelling, Carleene A. Bañez, Tabitha A. Chiu, Mario Iannuzzi, Aastha H. Patel, Ashleigh P. Shier and Joseph A. Cafazzo. The usability of ventilators: a comparative evaluation of use safety and user experience. Critical Care201620:263.

  2. Emeriaud G, et al. Evolution of inspiratory diaphragm activity in children over the course of the PICU stay. Intensive Care Med. 2014 Nov;40(11):1718-26.

  3. Bellani G, Pesenti A. Assessing effort and work of breathing. Curr Opin Crit Care. 2014 Jun;20(3):352-8.

  4. Barwing J, et al. Electrical activity of the diaphragm (EAdi) as a monitoring parameter in difficult weaning from respirator: a pilot study. Crit Care. 2013 Aug 28;17(4):R182.

  5. Goligher EC1, Ferguson ND2, Brochard LJ3. Clinical challenges in mechanical ventilation. Lancet. 2016 Apr 30;387(10030):1856-66.

  6. Jarr S, et al.Outcomes of and resource consumption by high-cost patients in the intensive care unit. Am J Crit Care. 2002 Sep;11(5):467-73.

  7. American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, entilatorassociated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388-416.

  8. Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342(20):1471-1477.

  9. Ely EW, Shintani A, Truman B, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004;291 (14):1753-1762.

  10. Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med. 2014; 370(17):1626-1635. Slutsky AS. Neuromuscular blocking agents in ARDS. N Engl J Med. 2010;363(12):1176-1180.

  11. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2014 Mar 6;370(10):980.

  12. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000 May 4;342(18):1301-8.

  13. Amato et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015 Feb 19;372(8):747-55.

  14. Tagami T, Kushimoto S, Yamamoto Y, Atsumi T, Tosa R, Matsuda K, Oyama R, Kawaguchi T, Masuno T, Hirama H, Yokota H. Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study. Crit Care 2010; 14(5): R162.

  15. Mitchell JP, Schuller D, Calandrino FS, Schuster DP. Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization Am Rev Respir Dis 1992; 145(5): 990-8.

  16. Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul JL. Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Medicine 2007; 33 (3): 448-53*

  17. Hu W, Lin CW, Liu BW, Hu WH, Zhu Y. Extravascular lung water and pulmonary arterial wedge pressure for fluid management in patients with acute respiratory distress syndrome. Multidiscip Respir Med 2014; 9(1):3

  18. McAuley DF, Giles S, Fichter H, Perkins GD, Gao F. What is the optimal duration of ventilation in the prone position in acute lung injury and acute respiratory distress syndrome? Intensive Care Med 2002; 28:414-8

  19. Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindström L: Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999, 5: 1433-1436. 10.1038/71012.

  20. Piquilloud L, Vignaux L, Bialais E, Roeseler J, Sottiaux T, Laterre P-F, Jolliet P, Tassaux D: Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med. 2011, 37: 263-271. 10.1007/s00134-010-2052-9.

  21. Brander L, Sinderby C, Lecomte F, Leong-Poi H, Bell D, Beck J, Tsoporis JN, Vaschetto R, Schultz MJ, Parker TG, Villar J, Zhang H, Slutsky AS: Neurally adjusted ventilatory assist decreases ventilator-induced lung injury and non-pulmonary organ dysfunction in rabbits with acute lung injury. Intensive Care Med. 2009, 35: 1979-1989. 10.1007/s00134-009-1626-x.

  22. Patroniti N, et al. Respiratory pattern during neurally adjusted ventilatory assist in acute respiratory failure patients. Intensive Care Med. 2012 Feb;38(2):230-9.

  23. Kim et al. Diaphragm dysfunction (DD) assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med. 2011 Dec;39(12):2627-30.

  24. Schepens T, et al. The course of diaphragm atrophy in ventilated patients assessed with ultrasound: a longitudinal cohort study. Crit Care. 2015 Dec 7;19:422.

  25. Cecchini J, et al. Increased diaphragmatic contribution to inspiratory effort during neutrally adjusted ventilatory assistance versus pressure support: an electromyographic study. Anesthesiology. 2014 Nov;121(5):1028-36.

  26. Di Mussi R, et al. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care. 2016 Jan 5;20(1):1.

  27. Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during mechanical ventilation: prevalence and risk factors. Intensive Care Med 2006;32(10):1515–1522.

  28. Tobin MJ, etal. Respiratory muscle dysfunction in mechanically ventilated patients. Mol Cell Biochem 1998;179(1-2):87–98.

  29. Sassoon CS, Foster GT. Patient-ventilator asynchrony. Curr Opin Crit Care 2001;7(1):28–33.

  30. Blanch L, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015 Apr;41(4):633-41.

  31. Pohlman MC, et al. Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med 2008;36(11):3019–3023.

  32. Colombo D, et al. Efficacy of ventilator waveforms observation in detecting patient–ventilator asynchrony. Crit Care Med. 2011 Nov;39(11):2452-7.

  33. de la Oliva, Schuffelmann C, Gomez-Zamora A, Vilar J, Kacmarek RM. Asynchrony, neural drive, ventilatory variability and COMFORT: NAVA vs pressure support in pediatric patients. A nonrandomized cross-over trial. Int Care med. Epub ahead of print April 6 2012.

  34. Beck J, Reilly M, Grasselli G, Mirabella L, Slutsky AS, Dunn MS, Sinderby C. Patient-ventilator interaction during neurally adjusted ventilator assist in very low birth weight infants. Pediatr Res. 2009 Jun;65(6):663-8.